3.5.28 \(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\) [428]

3.5.28.1 Optimal result
3.5.28.2 Mathematica [A] (verified)
3.5.28.3 Rubi [A] (verified)
3.5.28.4 Maple [A] (verified)
3.5.28.5 Fricas [A] (verification not implemented)
3.5.28.6 Sympy [F]
3.5.28.7 Maxima [B] (verification not implemented)
3.5.28.8 Giac [F]
3.5.28.9 Mupad [F(-1)]

3.5.28.1 Optimal result

Integrand size = 25, antiderivative size = 197 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {11 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {19 \sin (c+d x)}{6 a d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {7 \sqrt {\cos (c+d x)} \sin (c+d x)}{6 a d \sqrt {a+a \sec (c+d x)}} \]

output
-1/2*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(3/2)+11/4*arctanh(1/2 
*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*cos(d 
*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(3/2)/d*2^(1/2)-19/6*sin(d*x+c)/a/d/cos(d*x 
+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+7/6*sin(d*x+c)*cos(d*x+c)^(1/2)/a/d/(a+a* 
sec(d*x+c))^(1/2)
 
3.5.28.2 Mathematica [A] (verified)

Time = 0.49 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.68 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\left ((-12+4 \cos (c+d x)-19 \sec (c+d x)) \sqrt {1-\sec (c+d x)}-33 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)\right ) \sin (c+d x)}{6 d \sqrt {-1+\cos (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \]

input
Integrate[Cos[c + d*x]^(3/2)/(a + a*Sec[c + d*x])^(3/2),x]
 
output
(((-12 + 4*Cos[c + d*x] - 19*Sec[c + d*x])*Sqrt[1 - Sec[c + d*x]] - 33*Sqr 
t[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Cos[(c + 
d*x)/2]^2*Sec[c + d*x]^(3/2))*Sin[c + d*x])/(6*d*Sqrt[-1 + Cos[c + d*x]]*( 
a*(1 + Sec[c + d*x]))^(3/2))
 
3.5.28.3 Rubi [A] (verified)

Time = 1.06 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.06, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3042, 4752, 3042, 4304, 27, 3042, 4510, 27, 3042, 4501, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (\sec (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4304

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {\int -\frac {7 a-4 a \sec (c+d x)}{2 \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {7 a-4 a \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {7 a-4 a \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4510

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 \int -\frac {19 a^2-14 a^2 \sec (c+d x)}{2 \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{3 a}+\frac {14 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {14 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {19 a^2-14 a^2 \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{3 a}}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {14 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {19 a^2-14 a^2 \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4501

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {14 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {38 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-33 a^2 \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{3 a}}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {14 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {38 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-33 a^2 \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {14 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {66 a^2 \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {38 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{3 a}}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {14 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {38 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {33 \sqrt {2} a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{3 a}}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}\right )\)

input
Int[Cos[c + d*x]^(3/2)/(a + a*Sec[c + d*x])^(3/2),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/2*Sin[c + d*x]/(d*Sqrt[Sec[c + d 
*x]]*(a + a*Sec[c + d*x])^(3/2)) + ((14*a*Sin[c + d*x])/(3*d*Sqrt[Sec[c + 
d*x]]*Sqrt[a + a*Sec[c + d*x]]) - ((-33*Sqrt[2]*a^(3/2)*ArcTanh[(Sqrt[a]*S 
qrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d + ( 
38*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(3*a 
))/(4*a^2))
 

3.5.28.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4304
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc 
[e + f*x])^n/(f*(2*m + 1))), x] + Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e 
 + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e 
+ f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ 
[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4510
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/(b*d 
*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B* 
n - A*b*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, 
 m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.5.28.4 Maple [A] (verified)

Time = 1.60 (sec) , antiderivative size = 257, normalized size of antiderivative = 1.30

method result size
default \(\frac {\left (33 \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{2}+66 \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+33 \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}+8 \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )-24 \cos \left (d x +c \right ) \sin \left (d x +c \right )-38 \sin \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{12 d \,a^{2} \left (\cos \left (d x +c \right )+1\right )^{2}}\) \(257\)

input
int(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
1/12/d/a^2*(33*2^(1/2)*arctan(1/2*sin(d*x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(c 
os(d*x+c)+1))^(1/2))*(-1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2+66*2^(1/2)*arc 
tan(1/2*sin(d*x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*(-1/( 
cos(d*x+c)+1))^(1/2)*cos(d*x+c)+33*2^(1/2)*arctan(1/2*sin(d*x+c)*2^(1/2)/( 
cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*(-1/(cos(d*x+c)+1))^(1/2)+8*cos(d 
*x+c)^2*sin(d*x+c)-24*cos(d*x+c)*sin(d*x+c)-38*sin(d*x+c))*cos(d*x+c)^(1/2 
)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)^2
 
3.5.28.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 380, normalized size of antiderivative = 1.93 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\left [\frac {33 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left (4 \, \cos \left (d x + c\right )^{2} - 12 \, \cos \left (d x + c\right ) - 19\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{24 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {33 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) - 2 \, {\left (4 \, \cos \left (d x + c\right )^{2} - 12 \, \cos \left (d x + c\right ) - 19\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{12 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

input
integrate(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")
 
output
[1/24*(33*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*log(-(a*co 
s(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*s 
qrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 
 2*cos(d*x + c) + 1)) + 4*(4*cos(d*x + c)^2 - 12*cos(d*x + c) - 19)*sqrt(( 
a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d* 
cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/12*(33*sqrt(2)*(cos(d*x 
 + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos 
(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) - 2*(4*c 
os(d*x + c)^2 - 12*cos(d*x + c) - 19)*sqrt((a*cos(d*x + c) + a)/cos(d*x + 
c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d 
*x + c) + a^2*d)]
 
3.5.28.6 Sympy [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\cos ^{\frac {3}{2}}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate(cos(d*x+c)**(3/2)/(a+a*sec(d*x+c))**(3/2),x)
 
output
Integral(cos(c + d*x)**(3/2)/(a*(sec(c + d*x) + 1))**(3/2), x)
 
3.5.28.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 33960 vs. \(2 (162) = 324\).

Time = 0.79 (sec) , antiderivative size = 33960, normalized size of antiderivative = 172.39 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")
 
output
1/12*(4*(cos(3*d*x + 3*c)^2*sin(3/2*d*x + 3/2*c) + sin(3*d*x + 3*c)^2*sin( 
3/2*d*x + 3/2*c) - 9*(cos(3*d*x + 3*c)^2 + sin(3*d*x + 3*c)^2)*sin(1/3*arc 
tan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*cos(7/3*arctan2(sin(3/2 
*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^4 + 64*(cos(3*d*x + 3*c)^2*sin(3/2*d 
*x + 3/2*c) + sin(3*d*x + 3*c)^2*sin(3/2*d*x + 3/2*c) - 9*(cos(3*d*x + 3*c 
)^2 + sin(3*d*x + 3*c)^2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d* 
x + 3/2*c))))*cos(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) 
^4 + 4*sin(3/2*d*x + 3/2*c)^5 + 4*(cos(3*d*x + 3*c)^2*sin(3/2*d*x + 3/2*c) 
 + sin(3*d*x + 3*c)^2*sin(3/2*d*x + 3/2*c) - 9*(cos(3*d*x + 3*c)^2 + sin(3 
*d*x + 3*c)^2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)) 
))*sin(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^4 + 64*(co 
s(3*d*x + 3*c)^2*sin(3/2*d*x + 3/2*c) + sin(3*d*x + 3*c)^2*sin(3/2*d*x + 3 
/2*c) - 9*(cos(3*d*x + 3*c)^2 + sin(3*d*x + 3*c)^2)*sin(1/3*arctan2(sin(3/ 
2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*sin(5/3*arctan2(sin(3/2*d*x + 3/2* 
c), cos(3/2*d*x + 3/2*c)))^4 + 4*(2*cos(3*d*x + 3*c)^2*cos(3/2*d*x + 3/2*c 
)*sin(3/2*d*x + 3/2*c) + 2*cos(3/2*d*x + 3/2*c)*sin(3*d*x + 3*c)^2*sin(3/2 
*d*x + 3/2*c) + 2*cos(3*d*x + 3*c)*cos(3/2*d*x + 3/2*c)*sin(3/2*d*x + 3/2* 
c) + 8*(cos(3*d*x + 3*c)^2*sin(3/2*d*x + 3/2*c) + sin(3*d*x + 3*c)^2*sin(3 
/2*d*x + 3/2*c) - 9*(cos(3*d*x + 3*c)^2 + sin(3*d*x + 3*c)^2)*sin(1/3*arct 
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*cos(5/3*arctan2(sin(3...
 
3.5.28.8 Giac [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate(cos(d*x + c)^(3/2)/(a*sec(d*x + c) + a)^(3/2), x)
 
3.5.28.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int(cos(c + d*x)^(3/2)/(a + a/cos(c + d*x))^(3/2),x)
 
output
int(cos(c + d*x)^(3/2)/(a + a/cos(c + d*x))^(3/2), x)